0 800 30 30 70

Нормализация стали: процесс, температура, режимы, время

  1. Главная
  2. Статьи
  3. Нормализация стали: процесс, температура, режимы, время
Нормализация стали: процесс, температура, режимы, время
Что такое нормализация стали? Описание и суть процесса, температурные режимы выдержки и нормализации стали, основные методы термической обработки и нормализации металла
Нормализация стали: процесс, температура, режимы, время
Метинвест СМЦ
https://metinvest-smc.com/ru/articles/normalizatsiya-stali-protsess-temperatura-rezhimy-vremya/
2022-10-21 09:44:02
Нормализация стали: процесс, температура, режимы, время
17 Декабря 2019

Металл, используемый в производстве высокотехнологичных конструкций и деталей, чаще всего должен быть однородным и мелкозернистым. Такие стали обладают более высокими механическими характеристиками по сравнению с материалом крупнозернистой структуры. Для получения требуемых механических свойств, изменения внутреннего строения используется термообработка стали. Она включает множество методов температурного воздействия.

Ключевые понятия – важная терминология

  • Диаграмма состояния железо/углерод – график зависимости фазового состояния сплавов железа с углеродом от их химического состава и температуры.
  • Мартенсит – пересыщенный твердый раствор углерода в α-железе.
  • Цементит – химическое соединение с формулой Fe3С (карбид железа).
  • Аустенит – твердый раствор углерода в γ-железе. На диаграмме состояния железо-углерод аустенит появляется выше температуры перлитного превращения (727°С).
  • Температура превращения Ас3 – нагрев, при котором заканчивается превращение феррита в аустенит. Для сталей с различным содержанием углерода температура Ас3 отличается.
  • Дендритная ликвация – неоднородность химического состава, характерная для сплавов, твердеющих при нормальных условиях.
  • Ас, Ar – критические точки температуры фазовых преобразований. Ас – при нагреве, Аr – при охлаждении.

Что такое нормализация стали и зачем она нужна

Нормализация стали (НС) является разновидностью отжига и относится к процессам термической обработки (ТО), при которых сплав нагревается до аустенитного состояния, выдерживается определенное время и охлаждается. В данном случае нагрев происходит до температуры, превышающей критическую точку Ас3 на 30-50°С, при которой металл выдерживается, а затем охлаждается на воздухе.

Для каждого вида сплавов существует свой определенный режим обработки. В ходе процесса:

  • устраняются дефекты внутренней структуры;
  • повышается прочность;
  • понижается порог хладноломкости;
  • происходит полная рекристаллизация.

normalizatsia_stali_smc

Процесс нормализации стали

Результат ТО описывается графиком с координатами «температура-время». Для доэвтектоидных (содержание углерода до 0,8%), эвтектоидных (0,8% углерода) и заэвтектоидных (свыше 0,8% углерода) сталей температурный режим нормализации и структурный и фазовый состав после термической обработки будут значительно отличаться.

Нормализация стали используется в таких целях:

  • устранение остаточных внутренних напряжений;
  • увеличение/снижение прочности, твердости в зависимости от термической и механической истории изделия;
  • изменение структурного состава в мелкозернистый в отливках;
  • удаление наклепа;
  • подготовка к последующему термическому упрочнению (закалке).

Нормализация и измельчение зерна

В доэвтектоидных сталях мелкозернистой структуры добиваются путем аустенизации при температурах, немного выше Ас3, в заэвтектоидных – при температурах выше Ас1. При этом рост аустенитного зерна отмечается, когда температура отжига выше Ас3 или когда увеличена его продолжительность.

Крупнозернистый аустенит вне зависимости от скорости охлаждения дает крупнозернистые превращения. Так, в низкоуглеродистых сталях возникают довольно большие ферритные зерна и крупные островки перлита, а в сталях с высоким содержанием углерода – грубая ферритная сетка, окруженная крупными включениями перлита. В крупнозернистых сталях отмечается меньшее количество феррита, чем в мелкозернистых. А при больших скоростях охлаждения он может образовывать видманштеттову структуру. Из-за повышения температуры Ас3 вероятность образования крупных зерен увеличивается с уменьшением содержания углерода.

Применение нормализации позволяет добиться измельчения крупнозернистых структур: в перлите при переходе через точку Ас1 в большом количестве начинают появляться зародыши аустенита, что в результате вызывает образование мелкозернистых превращений. Высокая скорость охлаждения способствует измельчению зерна превращенной структуры, ведь повышение переохлаждения увеличивает в аустените число зародышей феррита и перлита. Этот процесс уже не зависит от количества содержащегося в стали углерода, феррита и перлита. К тому же повторная термическая обработка позволяет усилить эффект измельчения зерна.

В чем суть процесса нормализации стали?

Чтобы понять, для чего нужна нормализация стали, нужно разобраться в технологии. Для выполнения данной обработки используются специализированные участки металлургических и перерабатывающих предприятий, оснащенные термическими печами и другим вспомогательным оборудованием. Здесь металл нагревают до температуры аустенитизации, которая зависит от конкретной марки стали. После необходимой выдержки стальное изделие выгружают с последующим остыванием на спокойном воздухе (иногда может применяться усиленный воздушный обдув).

В прокатных цехах метпредприятий нормализация по такой схеме может быть заменена нормализующей прокаткой, которая осуществляется в потоке стана с использованием тепла нагрева полуфабриката перед деформацией. Такая обработка позволяет получить структуру и свойства стального проката, аналогичные нормализованному состоянию, при гораздо меньших временных и энергетических затратах.

Режимы нормализации стали – температура, время

Ключевыми параметрами любой термической обработки являются:

  • температура нагрева – выбирается в зависимости от вида ТО и марки стали, с учетом содержания углерода и основных легирующих элементов;
  • время выдержки – время, которое проводит стальное изделие в печи при заданной температуре для равномерного прогрева и протекания структурных и фазовых превращений. Время выбирается, исходя из габаритов изделия, его химического состава и температуры нагрева. Чем толще изделие, выше степень легирования и меньше температура – тем дольше будут протекать фазовые процессы;
  • вид, среда и скорость охлаждения оказывают непосредственное влияние на формирование окончательных структуры и механических характеристик. Образцы одной марки стали, нагретые до одной и той же температуры, но охлажденные по разным режимам будут иметь абсолютно разный комплекс свойств.

Температуру нагрева стали под нормализацию выбирают с учетом ее критических точек. Чаще всего для этого используют специальные изотермические и термокинетические диаграммы распада аустенита. Для новых марок стали значения критических температур определяют опытным путем.

Для доэвтектоидных сталей температура нагрева под нормализацию обычно назначается на 30-50°С выше критической точки Ас3. Заэвтектоидные стали нагревают до более низких температур в интервале Ас1-Ас3 (типовой режим – Ас1 + 50°С) для исключения чрезмерного роста зерна аустенита и последующего образования грубой сетки цементита.

normalizatsia_ravnovesie

Диаграмма фазового равновесия железо-углерод

Длительность нагрева под нормализацию складывается из двух основных элементов – времени прогрева изделия до заданной температуры и времени фазовых превращений. Для некрупногабаритных изделий простой формы обычно для прогрева достаточно 15 минут. Время фазовых превращений зависит от степени легирования сплава: для углеродистой стали и низколегированных марок назначают 1,5 минуты на каждый миллиметр толщины продукта, для высоколегированных – 2-2,5 мин/мм.

Охлаждение

Это важный элемент термической обработки, формирующий комплекс качественных и эксплуатационных характеристик изделия. Нормализация стали выполнятся с охлаждением на спокойном воздухе либо с применением ускоренного обдува вентиляторами.

В результате такой термообработки нормализованная сталь становится более мелкозернистой и равномерной по механическим характеристикам в сравнении с горячекатаной.

Другие методы термической обработки

ТО стали позволяет придать материалу характерный набор свойств путем изменения его внутренней структуры. Кроме нормализации, термическая обработка стали может осуществляться и другими методами.

  • Закалка. Металлопрокат прогревается до температур выше точек фазового превращения, а затем резко охлаждается в воде, масле, солевых и других растворах (в зависимости от состава стали и требуемой скорости охлаждения). Такая обработка придает материалу высокую прочность, твердость и хрупкость. Закалку проходят детали, работающие под статической нагрузкой и в условиях абразивного изнашивания, но без воздействия меняющихся колебаний.
  • Отпуск стали. Его проходят некоторые заготовки после закалки, а также изделия, требующие снятия внутренних напряжений или корректировки микроструктуры. В этом случае нагрев выполняют до температур ниже фазовых превращений с последующим охлаждением на воздухе либо ускоренно – в воде. При этом повышаются пластичность и ударная вязкость, снижается прочность и твердость стали.
  • Отжиг. Осуществляется по технологии нагрева выше фазовых превращений с последующим плавным остыванием прямо в печи. После такой обработки сталь имеет наивысшую пластичность и наименьшую прочность. Нормализация является подвидом отжига, отличается только условиями охлаждения (часто ее называют нормализационным отжигом). За счет более быстрого остывания металла нормализация является более производительной.
  • Термическая обработка в технологическом потоке прокатного стана. Наиболее перспективное направление развития технологий ТО, которое сокращает временные и материальные затраты, а также экологическую нагрузку. Самыми популярными на сегодняшний день являются способы термомеханической, нормализующей и контролируемой прокатки, а также прямая закалка с прокатного нагрева.

Выбор способа термической обработки осуществляется на основании химического состава и параметров стального изделия, уровня свойств, который требуется обеспечить, а также имеющегося набора оборудования для осуществления данных операций. Термическая обработка может применяться и как промежуточная операция при изготовлении металлоизделий, и как окончательная – придающая продукту конечный комплекс характеристик. 

Если вместо закали грамотно применять нормализацию стали, можно:

  • избежать образования различных закалочных структур, коробления, трещин и прочих дефектов;
  • сохранить правильную геометрическую форму как у изделий простой, так и сложной конфигурации;
  • обеспечить достаточно высокое качество металлопродукции без существенного повышения цены.

normalizatsia_stali

Нормализация стали

Чтобы обезопасить свое производство от форс-мажорных ситуаций, связанных с использованием деталей и конструкций из некачественного металла, приобретайте только сертифицированную продукцию и только у надежных поставщиков.

Если вы решили купить металлопрокат у нас, вы получаете дополнительно гарантию соответствия заявленной структуре и химическому составу. Нужна консультация? По любым вопросам обращайтесь на нашу контактную линию по телефону 0800-30-30-70 – оказываем консультативную поддержку бесплатно.

 Мы рады, что вы заинтересовались информацией из нашего блога. И даем согласие на использование материалов для учебных целей или для личного пользования. Однако предупреждаем, что копирование информации для публичного распространения – это нарушения авторского права и других прав интеллектуальной собственности, согласно Бернской конвенции и Закона Украины об авторском праве №3792-XII.

 


#
Продукт добавлен к сравнению