Какой металл самый прочный? - Их виды и применение

  1. Главная
  2. Статьи
  3. Какой металл самый прочный? Виды и применение
Какой металл самый прочный? Виды и применение
Самый прочный металл в мире - вольфрам, осмий, иридий, хром и прочие. От чего зависит прочность металлов? Описание самых прочных металлов: их механические свойства, химический состав самых твердых металлов в мире и их применение.
Какой металл самый прочный? Виды и применение
Метинвест СМЦ
https://metinvest-smc.com/ru/articles/kakaya-stal-samaya-prochnaya-vidy-i-primenenie/
2022-07-13 14:13:44
Какой металл самый прочный? Виды и применение
11 Августа 2020

Металлы всегда играли значительную роль в развитии материальной культуры человеческого общества. Сегодня человечеству известны 118 химических элементов, из них 96 – металлы. Все они, за исключением ртути, в естественном природном состоянии находятся в твердом виде и характеризуются разной твердостью, хорошо проводят электрический ток. Если единственный жидкий из них – ртуть, то какой металл самый прочный?

Самые прочные металлы в мире

Все относительно, в том числе и анализ прочности материалов. Сравнения нужно проводить по единым критериям, при соблюдении одинаковых условий. Сделать это практически невозможно. Ту же относительную твердость можно рассматривать как по шкале Мооса, так и по методам Бринелля, Виккерса, Шора и пр. Существует еще ряд параметров, позволяющих произвести сравнительный анализ различных материалов. Оценивать, какой самый крепкий металл в мире, нужно с учетом:

  • прочности – способности металлов сопротивляться внешним воздействиям без разрушения и необратимого изменения формы. С учетом условий применения (высокие и низкие температуры, ударные нагрузки, повышенный временной ресурс) и вида напряженного состояния (изгиб, сжатие, растяжение) профессионалы учитывают разные критерии прочностных характеристик: предел прочности, временное сопротивление, предел усталости, относительное удлинение, длительная прочность и пр.;
  • предела прочности – параметра, характеризующего сопротивление значительным пластическим деформациям и выражающий максимальную нагрузку при растяжении, после приложения которой начинается разрушение металла с последующим разделением целого изделия на части. Данный параметр также иногда называют временным сопротивлением разрушению;
  • предела текучести – механической характеристики, выражающая напряжение металла, при котором деформации продолжают расти без увеличения нагрузки. Данный параметр также часто выступает базовым критерием прочностных характеристик;
  • твердости – сопротивления металлов вдавливанию. Данный параметр не является физической постоянной, так как он зависит от прочности, пластичности и изменений в структуре металла. При изменении температуры, а также после различной термической и механической обработки величина твердости меняется в том же направлении, что и предел текучести.

metal_na_sklade

Металлопрокат на складе

От чего зависит прочность металлов?

Если понятие «надежность» свойственно для характеристик готовых конструкций, сооружений или изделий, то металлы или их сплавы должны быть заведомо прочными, стойким к охрупчиванию и трещинообразованию. Иначе любые изделия, агрегаты и объекты, созданные с их применением, не смогут быть надежными при эксплуатации. Какие же тогда самые прочные металлы и сплавы? Здесь однозначного ответа нет, а вопрос не совсем некорректен, так как в каждой отрасли в него вкладывают особый смысл. Например, для рабочих элементов спецтехники важна абразивная износостойкость и стойкость к ударным нагрузкам, для атомной энергетики самый прочный металл – тот который сохраняет свои свойства под воздействием α-, β- и ϒ-излучения, а для инструмента используются материалы повышенной твердости. И если прочность и надежность металлов зависит от количества примесей, вязкости, предельной и начальной прочности, то на прочность сталей влияет структура ее металла и химический состав.

Высокая прочность сталей достигается обеспечением мелкозернистой структуры, так как при мелком зерне вследствие различного направления плоскостей скольжения в отдельных зернах затруднено образование сплошных плоскостей скольжения. К тому же наличие многочисленных границ препятствует скольжению из-за несовершенства кристаллической решетки на границах зерен. Таким образом, измельчение зерна повышает сопротивление отрыву, минимизирует стойкость к трещинообразованию и увеличивает параметры ударной вязкости.

Вольфрам

На земном шаре самый прочный металл, обладающий невероятной устойчивостью к коррозии и демонстрирующий высокую тугоплавкость. Хоть он и мало распространен в недрах, часто входит в состав инструментальных и самых тугоплавких сплавов.

Свойства

Из-за светло-серого цвета вольфрам похож на сталь. Физические и химические свойства позволяют использовать его для легирования сплавов и сталей, так как он тормозит рост зерен аустенита, снижает чувствительность к охлаждению после высокого отпуска и резко уменьшает высокотемпературную отпускную хрупкость. Другие физические свойства:

Параметр

Единицы измерения

Значение

Температура

плавления

°С

3422

кипения

°С

5900

Жидкотекучесть

мм

100

Относительное удлинение

%

1

Твердость

кгс/мм2

350

Плотность

г/ см3

19,3

Коэффициенты

линейного термического расширения (10 в минус 6)

м/мК

 

4,32

Пуассона

 

0,29

Относительное сужение

%

Вольфрам (W) имеет наименьший коэффициент линейного расширения, что объясняется постоянством атомной решетки. Прочность возрастает при холодной деформации. Из недостатков: низкая пластичность, высокая вероятность ломкости при отрицательных температурах, плохая свариваемость и обрабатываемость резанием.

Области применения

Металл используется в чистом виде и входит в состав твердых, жаропрочных и износостойких сплавов. Коррозионная стойкость способствует применению в жидкометаллических составах ртути, лития, натрия, калия, используемых в энергоустановках. Вольфрам также незаменим:

  • как компонент инструментальных, быстрорежущих сталей (Р6М5, Р6М5К5, Р6М5Ф3) и материалов для нитей накаливания, неплавящихся сварочных электродов, катодов и деталей мощных электровакуумных приборов;
  • для производства твердотопливных и ионных двигателей.

Осмий

Наглядный представитель редчайших драгметаллов платиновой группы. В слитках осмий имеет темно-синий цвет, а его кристаллы отличаются красивым серебристо-голубым оттенком. В чистом виде в природе практически не встречается из-за хрупкости и высокой твердости, но часто присутствует в метеоритном металле. Имеет несколько изотопов, самый ценный и редкий – осмий-187.

Осмий существует в виде различных форм-соединений с другими химическими элементами. Наиболее распространенные его «компаньоны» – иридий и платина. Входит в состав медной, никелевой руды. Сопутствует натуральной платине. Получают его из обогащенных пород: из 10000 тонн руды, содержащей платиновые металлы, добывается около 28 граммов осмия.

Свойства

Из-за высокой хрупкости сложно утверждать, что осмий – самый крепкий металл. Но то, что это второй по тяжести – бесспорный факт (тяжелее только иридий). Кроме высокой плотности и массы, осмий можно рассматривать как химически устойчивый, довольно твердый материал, который практически не поддается обработке.

Параметр

Единицы измерения

Значение

Плотность (при н.у.)

г/см3

22,587 ± 0,009

Температура

плавления

°С/К

3054/3327

кипения

°С/К

5027/5300

начала окисления

°С

500

Твердость (по Виккерсу/по Моосу)

ГПа/баллы

3-4/6-7

Теплоемкость молярная

Дж/(K*моль).

24,7

Теплота испарения

кДж/моль;

738

Электроотрицательность

э

1,3

Потенциал ионизации

эВ

8,7

Редкий металл с большим потенциалом. Но его добыча обходится слишком дорого и в год составляет несколько сотен килограммов. Искусственно синтезированный осмий не поддается обработке давлением, плавится в вакуумных установках.

Области применения осмия

Небольшие партии добычи и уникальные свойства обуславливают применением осмия (Os) в тех случаях, когда его применение максимально целесообразно. Это:

  • датировка, анализ кварцев пограничного слоя между Меловым и Третичным периодами;
  • легирование сплавов для повышения их износостойкости и долговечности;
  • создание покрытие на узлах механизмов, активно подвергающихся трению;
  • аэрокосмическая и военная область;
  • производство точных деталей в машиностроении, медицинских инструментов и кардиостимуляторов;
  • катализация процессов гидрирования органических соединений.

Иридий

Химический элемент и металл – иридий (Ir) с плотностью 22,65 г/см³ – делит пальму первенства, как самый тяжелый и тугоплавкий элемент, с осмием. Но его можно характеризовать и как самый прочный металл, к тому же редкий: годовая добыча в мире не превышает 10 тысяч кг.

Драгметалл бело-золотого цвета, характеризуется высокой инертностью. В природе находится в самородном состоянии, встречается как смесь с Pt или Os. Любое из таких соединений можно характеризовать, как самый твердый сплав, долговечный и крепкий. Существует закономерность: там, где есть самородная платина, ищите осмистый иридий. Налажено также искусственное производство Ir из переработанной платиновой руды.

Свойства

Иридий принадлежит к группе благородных металлов. Характеризуется высокой коррозионной стойкостью и высокой плотностью. Инертен к царской водке, ко всем кислотам, а также их смесям в температурном поле до 100°C.

Параметр

Единицы измерения

Значение

Плотность

(н.у.)

г/см3

22,42

(жидкое состояние)

19,39

Атомная масса

u

199,217

Удельная теплоемкость

Дж/(K*моль)

0,133 

Форма кристаллической решетки

гранецентрированный куб

Электроотрицательность

э

1,4

Потенциал ионизации

эВ

9,2

Температура

плавления

°С

2447

кипения

4577

Теплопроводность

Вт/(м*K)

147

Показатель линейного расширения

град.

6,5х10-6

Теплота испарения

кДж/моль

604

Применение иридия

Вариативное использование обусловлено стойкостью иридия к окислению при высоких температурах, сохранению первоначальных характеристик в любых химических растворах и смесях, при переплавке. Металл, как правило, используется в сплавах. Основное применение:

  • легирование сплавов для особо ответственных металлоизделий;
  • изготовление посуды и хирургического инструмента;
  • производство иридиевых свечей сгорания, топливных баков, катодов и нерастворимых анодов;
  • приборостроение;
  • изготовление термопар для сверхвысоких температур (≥2000°С).

Хром

Нельзя однозначно утверждать, что хром – самый прочный металл в мире. Но то, что это самый твердый металл в мире действительно так. Металла белой окраски с голубоватым отливом и довольно специфическими признаками в земной коре содержится довольно много – 0,02%. В природе находится чаще всего в составе соединений, но встречается и в чистом виде.

Свойства

О том, что хром – это самый «сильный» металл и достаточно распространенный на нашей планете, спорить трудно. Его физико-химические свойства говорят сами за себя. Металл стоек к коррозии, высоким температурам. Особо ценными считаются его соединения – крокоит и железняк.

Параметр

Единицы измерения

Значение

Температура

плавления

°C

1513-1920

кипения

2199

Плотность

г/см³

7,19

Теплопроводность

Вт/(м*K)

93,9

Твердость по шкале Мооса

8,5

Удельная теплоемкость (при t = 0°С)

кДж/(кг*К)

0,448

Теплота испарения

кДж/моль

342

Применение хрома

Наиболее широко хром (Cr) используется в металлургии для легирования сталей и сплавов, а также для:

  • производства антикоррозийных и декоративных покрытий;
  • изготовления огнеупоров;
  • дубления кожи (хромовые квасцы).

Рений

Первые месторождения этого очень плотного и твердого металла были обнаружены в Германии. Рений занимает лидирующие позиции в рейтинге самых редких на Земле и самых дорогих металлов. Встречается в чистом виде и в медной руде. В метеоритном железе находится в свободном состоянии.

Свойства

Принадлежит к группе переходных элементов. В таблице представлен ряд физических свойств рения.

Параметр

Единицы измерения

Значение

Температура

плавления

°С

3180

кипения

5596

Плотность (н.у. и t=20°С)

г/см3

21,02

Теплота (удельная)

плавления

кДж/моль

34

испарения

704

Твердость

шкала Мооса

7

по Виккерсу

МПа

2450

Отмечается устойчивость характеристик при многократных циклах «нагрев-охлаждение», инертность по отношению к водороду, азоту. Рений (Re) не растворяется в соляной и плавиковой кислоте.

Где применяется?

Высокая стоимость делает использование рения ограниченным и только в виде сплава с другими металлами, в частности с молибденом и вольфрамом. Наиболее ценен для:

  • ракетных и энергетических установок;
  • защиты от агрессивных сред;
  • авиации;
  • производства хирургического инструмента.

Титан

Металл, которого в земной коре находится около 0,66%, замыкает «десятку» по распространенности в природе. Добывается из руды. Отличается уникальным сочетанием прочности, твердости и легковесности, что позволяет использовать его в тех средах, где магниево-алюминиевые сплавы прекращают работать.

Свойства

Выясняя, какой самый прочный металл, особое внимание следует обратить на физические свойства титана. Этот металл очень пластичен, но сваривается только в инертных средах.

Параметр

Единицы измерения

Значение

Плотность (н.у.)

г/см3

4,54

Удельная прочность

км

30-35

Удельная теплота испарения

кДж/моль

422,6

Удельная теплота плавления

18,8

Теплопроводность при 300 K

Вт/(м*К)

21,9

Электропроводность (твердая фаза)

См/м

2,5х106

Твердость

по шкале Мооса

6

по Виккерсу

МПа

970

Температура

°C

1668

Применение титана

Раньше металл был затребован, в основном, в оборонной и военной промышленности. Сегодня его распространение в других сферах возрастает с каждым днем. Его широко используют в качестве легирующего элемента сталей и сплавов для:

  • обшивки специальных морских судов, газовых турбин авиадвигателей, деталей планерной части;
  • инструмента и конструкций повышенной надежности;
  • комплектующих насосов и трубопроводов;
  • глубоководных аппаратов и бурильных установок;
  • теплообменного оборудования и пр.

Железо и стали

Само по себе чистое железо, как самый жесткий металл, не позиционируется. Металл нашел массовое применение в сплавах с углеродом, для улучшения и изменения механических и технологических свойств которых вводят различные легирующие элементы. Стали, хоть и являются не металлами, а сплавами, именно начало их производства стало основой для активной индустриализации промышленности и сельского хозяйства. Благодаря им созданы крупные производственные предприятия и небоскребы, планету опутала сеть железнодорожного сообщения и магистральных трубопроводов, моря бороздят крупнотоннажные танкеры и шикарные туристические лайнеры, а в домах появилась многочисленная санитарно-техническая и бытовая техника.

Прочность углеродистых сталей в основном зависит от массовой доли находящегося в ней углерода. Чем выше его концентрация, тем прочнее сталь. Но высокое содержание углерода негативно сказывается на свариваемости стали и вызывает значительное снижение ее пластичности, а также повышает склонность к старению. При этом это достаточно дешевое и общедоступное вещество, что является важным экономическим фактором и обуславливает широкое применение углеродистых сталей повышенной прочности в строительстве и инжиниринге.

В связи с массовым использованием сварных стальных конструкций в самых разных отраслях возникла потребность в снижении массовой доли углерода для производства высокопрочных марок. Поэтому в тех случаях, когда свариваемость является ключевым параметром, повышать прочность стали за счет увеличения углерода неприемлемо и нужных механических параметров достигают путем легирования. Однако при этом крайне важно изыскать пути для снижения затрат на производство, так как многие легирующие компоненты относятся к дорогостоящим материалам.

В XX веке отмечалась устойчивая тенденция к повышению прочности стали за счет легирования недорогим марганцем. Но по мере развития металлургических технологий и металлографического анализа все более широко начинают использоваться и другие общедоступные и даже очень дефицитные элементы, большинство из которых образует с железом и углеродом карбиды и тем самым значительно повышают твердость и прочность сталей. Так компенсировать потери прочности из-за снижения массовой доли углерода можно введением:

  • бора. Это вещество даже в очень малых концентрациях оказывает существенное влияние на свойства сталей. Например, при увеличении массовой доли бора до 0,25% прочность стали возрастает в 1,4 раза. Теплофизические свойства бористых сталей почти такие же, как и у нержавеющих, при этом их отличает низкая пластичность и высокая радиационная стойкость;
  • ванадия. Карбидообразующий элемент, сильно измельчающий зерно аустенита. Многократно повышает прочность, вязкость и стойкость к ударным нагрузкам. Применяется для легирования конструкционных и быстрорежущих инструментальных сталей;
  • вольфрама. Наиболее часто добавляется в жаропрочные хромистые и хромоникелевые марки и в значительной степени минимизирует их ползучесть;
  • кремния. Один из наиболее значимых легирующих компонентов для обеспечения высокой прочности сталей. Его введение позволяет снизить содержание углерода, серы и растворенного в стали кислорода;
  • кобальта. Благотворно влияет на механические свойства высокопрочных сталей. Увеличивает подвижность дислокаций и тем самым уменьшает концентрацию напряжений;
  • никеля. Марки стали, содержащие Ni в количестве 3% и более, отличаются высоким комплексом механических свойств, имеют удовлетворительную свариваемость и очень высокие показатели коррозионной стойкости даже при контакте с морской водой;
  • ниобия. Ниобийсодержащие стали характеризуются мелкозернистой структурой и высоким пределом текучести. Они чаще всего производятся в виде толстолистового проката и находят применение в конструкциях ответственного назначения, при производстве труб для магистральных трубопроводов и в мостостроении;
  • титана. Образует прочные карбиды и нитриды, измельчает зерно аустенита. Снижает склонность к межкристаллической коррозии. Повышает окалиностойкость и прочность;
  • хрома. Введение этого вещества в сталь значительно повышает ее прочность. В сочетании с никелем хром не только улучшает твердость и прочность, которые особенно проявляются в закаленном и высокоотпущенном состоянии, но и определяет высокие антикоррозионные свойства;
  • церия. Он заметно влияет на механические и технологические свойства и при этом выступает десульфатором и дегазатором. Повышает жидкотекучесть и свариваемость сталей.

Производство сталей высокой прочности для сварных металлических конструкций довольно часто сводится к получению металла с измельченной структурой путем термической обработки при минимальном легировании. Поэтому большинство высокопрочных марок легированной стали содержит не один, а несколько легирующих компонентов, но содержание их часто не велико: хрома 0,5…1,5%, никеля 1,0…4,0%, вольфрама 0,8…1,2%, молибдена 0,2…0,4%.

Помимо корректировки химического состава и применения термической обработки повысить качество и прочностные характеристики сталей можно значительной минимизацией количества неметаллических включений и кислорода в процессе плавки. Это можно выполнить добавлением редкоземельных металлов или мишметалла – сплава церия, лантана, неодима, празеодима, что позволяет сократить количество серы и неметаллических включений более чем в два раза. Существенное значение для повышения качества высокопрочных сталей имеет применение современных методов выплавки (электрошлакового, вакуумно-дугового, вакуумно-индукционного, конверторного и т.д.), а также вторичной обработки стали на установках «ковш-печь», в вакууматорах и других агрегатах.

obrabotka

Обработка железа

Какая самая прочная сталь

Определить какая самая прочная сталь можно только для конкретных условий применения, так как в каждом случае от материала требуются определенные специальные свойства. И если еще в середине XX века к сталям высокой прочности относили марки с пределом текучести не менее 270 Н/мм2, то сегодня самая крепкая сталь может иметь твердость, доходящую до HB 700, предел текучести – до 1650 МПа, временное сопротивление – до 2500 МПа.

Для некоторых отраслей промышленности наибольший интерес в настоящее время представляют инновационные разработки, в том числе марки, выпускающиеся под брендом отдельных металлургических компаний, например:

  • закаленные стали высокой твердости. Эти стали, характеризующиеся высокой износостойкостью, твердостью и прочностью, используются в условиях сильного абразивного износа и ударного воздействия. Конечно, нельзя заявлять, что это самый крепкий металл, тем не менее они положительно зарекомендовали себя в различных сферах машиностроения, демонстрируют сверхдлительный срок службы и позволяют легко достичь оптимального баланса между весом, формой и эксплуатационными свойствами. К таким материалам относятся стали под брендом Hardox шведской компании SSAB (Hardox 600, Hardox 450, Hardox HiTuf, Hardox HiAce и другие), шведские стали группы Swebor, марки Dillidur немецкой компании Dillinger, стали Miilux и многие другие;
  • свариваемые высокопрочные стали после закалки и отпуска. Эти сплавы с пределом текучести от 400 до 1300 МПа и временным сопротивлением до 1400…1700 МПа широко используются в промышленном и гражданском строительстве, создании оффшорных буровых платформ и башен ветрогенераторов, производстве подземной и наземной техники. В эту группу относятся строительные стали по стандарту EN 10025-6 (S690Q, S690QL, S890Q, S960Q и пр.), марки под брендами Strenx/ Weldox, Xabo, Dillimax, aldur т.д.;
  • AerMet 100 и другие легированные ультрапрочные мартенситные стали, имеющие исключительные механические свойства, удовлетворительную свариваемость, достаточную стойкость к коррозии;
  • 16Х2ГБС, 16ХГМФТР, 25ХГСР и другие разработки украинских металлургов также востребованы на рынке. Они широко используются для изготовления сварных металлоконструкций ответственного назначения: резервуаров высокого давления, магистральных трубопроводов, мостовых переходов;
  • термомеханически упрочненный прокат для строительства (стандарт ДСТУ EN 10025-4) и машиностроения (стандарт EN 10149-2). Структура и свойства этих сталей формируются в результате применения специальных режимов на станах горячей прокатки, сочетающих строгий контроль за степенью обжатий, температурой конца прокатки и скоростью охлаждения. Материал сочетает высокую прочность и низкий углеродный эквивалент, что позволяет сократить не только металлоемкость без потери эксплуатационной стойкости, но и сэкономить на сварочных материалах при создании конструкций, а также сократить сроки возведения объектов.

Химический состав некоторых сталей, имеющих высокие параметры прочности

Марка стали

Массовая доля, %

C

Mn

Si

Cr

P

S

Ni

Cu

N

V

B

W

Mo

Co

Ti

не более

09Г2С

до 0,12

1,3…1,7

0,5…0,8

до 0,30

0,035

0,04

до 0,3

до 0,3

до 0,012

10ХСНД

до 0,12

0,5…0,8

0,8…1,1

0,6…0,9

0,035

0,04

0,5…0,8

0,4…0,6

до 0,008

16Г2АФ

0,14…0,20

1,30…1,70

0,30…0,60

до 0,40

0,035

0,04

до 0,30

до 0,30

0,015…0,025

0,08…0,14

30MnB5

0,27…0,33

1,15…1,45

до 0,4

0,025

0,15

0,0008…0,005

Р9М4К8

1,0…1,1

0,50

0,50

3,0…3,6

0,030

0,030

до 0,40

2,3…2,7

8,5…9,5

3,8…4,3

7,5…8,5

0.2

RAEX 500

0,30

1,70

0,80

1,50

0,025

0,015

1,00

0,005

0,50

 -

Разработка конструкционных сталей с пределом текучести выше 500 Н/мм2 направлена на повышение технологических и эксплуатационных характеристик. К их числу можно отнести свариваемость, ударную вязкость, сопротивление хрупкому разрушению, химическую и структурную однородность. Из-за больших объемов потребления таких сталей особое значение имеет их стоимость, которую можно снизить в основном за счет экономного легирования и применения различных режимов упрочняющей термообработки.

Физико-механические характеристики некоторых сталей повышенной и высокой прочности

Марка стали

Толщина проката, мм

Временное сопротивление

σв, Н/мм2

Предел текучести

σт, Н/мм2

Относительное удлинение

δ5, %

10ХСНД

до 10

более 510

более 390

более 19

от 10 до 15

от 15 до 32

от 32 до 50

16Г2АФ

до 10

более 510

более 390

более 19

от 10 до 20

от 20 до 32

06ГБД

8…50

более 490

более 390

более 22

06Г2Б

8…50

более 540

более 440

более 22

30ХГСНА

до 80

1620

1375

более 9

AerMet 340

до 80

2380

2070

более 11

Где применяют стали высокой прочности

Использование сталей с высокими прочностными параметрами позволяет обеспечить необходимую надежность и малую металлоемкость конструкций, возможность их длительной и бесперебойной эксплуатации при низких температурах и динамических нагрузках. Поэтому переход на стали повышенной и высокой прочности – злободневный вопрос для многих отраслей промышленности, а наиболее прогрессивные компании и предприятия уже широко используют их.

В гражданском, промышленном и военном строительстве востребованы S420ML…S460ML, S690QL…S960QL, а также 15Г2СФ, 10Г2ФР, 16Г2АФ, 12ХГ2СМФ, 14ГСМФР. Для изготовления различного высокопрочного инструмента и технологической оснасти применяются 3Х3М3Ф, Х12Ф1, Х12ВМ, 7Х3 и 3Х3М3Ф. Также стали повышенной и высокой прочности очень разнообразно используются для несущих и ответственных металлоконструкций, производства обшивки и деталей машин и вагонов, рессор и шасси, рабочих элементов землеройной и спецтехники, крепежа и валов.

stroitelstvo_smc

Использование металла в строительстве

Уран

Серебристо-белый блестящий радиоактивный элемент естественного происхождения. Известно около 100 минералов урана, но только 12 имеют промышленное значение. Находятся в свободном состоянии или в кислых осадочных породах оболочки земной коры. Локальные запасы сосредоточены в твердых скальных образованиях. Уран, если не самый прочный материал, то, по крайней мере, один из самых твердых. Получают его из урановых руд.

Свойства

Легко поддается механической и термической обработке. Соединения радиационно и химически токсичны. Свойства зависят от чистоты металла.

Параметр

Единицы измерения

Значение

Твердость

по Роквеллу

100/200-300

по Моосу

4,0

Теплота испарения

ккал/моль

106,7

Теплопроводность (при 343°К)

Вт/(см*К)

0,29

Плотность (при +25°С)

г/см3

19,04

Температура

кипения

°С

3318

плавления

°С

1132

Энтальпия

ккал/моль

1521,4

Коэффициент Пуассона

0,25

Модуль упругой деформации

кПа

0,176

Где применяется уран?

Урановая промышленность сфокусирована на добыче и переработке урановых и других радиоактивных руд с целью получения соответствующих концентраторов для ядерной энергетики и военной отрасли. Уран находит свое применение:

  • как топливо в исследовательском и ядерном реакторе;
  • в производстве флуоресцентных стекол;
  • при изготовлении транспортных контейнеров для радиоактивных грузов и отходов.

Бериллий

Высокотоксичный щелочноземельный металл светло-серого цвета, устойчивый к коррозии. На воздухе быстро покрывается оксидной пленкой, защищающей его от дальнейших реакций окисления. Бериллий получают из минерала берилла. Несмотря на среднюю твердость 5,5 баллов по шкале Мооса, он довольно хрупкий, с низким электрическим сопротивлением.

Свойства

Металл химически активен: растворяется в большинстве кислых сред и водных щелочных растворах. С водой вступает в реакцию только после ее закипания.

Параметр

Единицы измерения

Значение

Плотность

г/см3

1,816

Температура

плавления

°С

1278-1283

кипения

2470

Молярная теплоемкость

Дж/(K*моль)

16,44

Теплопроводность

Вт/мК

216

Коэффициент Пуассона

0,07-0,18

Предел прочности при растяжении

МПа

370

Ударная вязкость

МПа

10,6-12,3

Модуль упругости

ГПа

303

Твердость по Роквеллу

75-85

Где применяется?

Основная сфера использования – тепловые экраны и системы наведения в аэрокосмической отрасли. Бериллий необходим также в создании:

  • огнеупорных материалов;
  • сплавов для самолетов, спутников и ракет;
  • твердотельных излучателей;
  • отражателей нейтронов и ядерного оружия;
  • субстрата для расплава солей.

Тантал

Уникальное сочетание твердости, пластичности, сверхвысокой температуры плавления нашло отражение в тантале (Та). Металл с плотностью 16,67 г/см³ – типичный представитель гранитной и щелочной магмы. Входит в ТОП самых тяжелых металлов. Тугоплавкий, устойчив к коррозии. Добывается из минерала колтана. В техническом металле доля Та составляет 97%, W – до 2,5%.

Свойства

Особенность тантала – способность поглощать азот, кислород, водород. Из-за хорошей пластичности поддается штамповке.

Параметр

Единицы измерения

Значение

Плотность

кг/м3

16600

Коэффициент теплового расширения (н.у)

°С

6,5*10-6

Предел текучести

МПа

170

Модуль упругости (по Юнгу)

ГПа

186

Температура

плавления

°С

3017

кипения

5458

Молярный объем

см³/моль

10,9

Теплопроводность

Вт/(м*K)

57,5

Где применяется тантал?

Востребован там, где нужна высокая коррозионная и химическая устойчивость:

  • медицинские имплантаты;
  • мощнейшие конденсаторы и элементы электроники;
  • сооружение ядерных реакторов;
  • производство жаропрочных сплавов;
  • изготовление трудносплавного инструмента и резцов по обработке металлов;
  • производство запчастей реактивных двигателей и теплообменников в приборостроении.

Выводы

Определить какой металл самый крепкий или какая самая прочная сталь можно только для конкретных условий, принимая в расчет все факторы: износостойкость, твердость, прочность, устойчивость к агрессивным средам и другие. К тому же в условиях рыночной экономики важное значение имеет рентабельность производства, что существенно ограничивает применение дорогих и редких металлов, но открывает колоссальные перспективы для применения высокопрочных сталей в самых разнообразных сферах: от освоения космоса и выращивания пшеницы.

Компания «Метинвест-СМЦ», располагая обширной базой металлопроката различного сортамента, всегда готова помочь своим клиентам в выборе металлопродукции из сталей повышенной и высокой прочности с учетом характера ее применения и условий эксплуатации. Звоните, наш телефон 0800-30-30-70.